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FIG. 6.-Dislocation models of band boundaries. a, simple deformation band showing edge dislocations of 

opposite sign accumulated in slip planes at opposite boundaries of a band. b, polygonized band boundary, 
showing dislocations redistributed into two walls of opposite sign at the boundaries (a and b after Cottrell, 
1953, p. 166). c, model of a symmetrical kink boundary in quartz viewed parallel to the dislocation lines. Tilt 
is approximately 7° on each side of boundary. d, model of an asymmetrical band boundary in quartz, viewed 
a long the dislocation lines. Tilt is approximately 2° on left side of the boundary and 12° on right. Basal edge 
dislocations introduce extra prism planes on each side of boundary, and prismatic edge dislocations introduce 
extra basal planes (heavy broken lines) on side with smaller ti lt. (In c and d distortions of the prism planes in 
the neighborhood of basal edge dis locations are omitted for simplicity.) Basal and prismatic dislocation lines 
are assumed to be normal to the plane of the figure. 
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tions may become redistributed in a vertical 
array or "wall" in the plane of the boundary, 
this being a more stable arrangement (fig. 
6, b). The latter model is identical with that 
of a simple grain boundary across which the 
disorientation is prescribed by a small rota
tion about an axis in the boundary. 

We shall consider a model for the bound
aries of c-axis bands in our samples con
sisting of such an array of basal edge dislo
cations (dislocations lying in the base paral
lel to the boundary; Burgers vectors in the 
base) locked in the boundaries. This is con
sistent with the observed strains in the 
bands and with the dislocation model for the 
basal lamellae discussed above. The sharp
ness of some of the band boundaries indi
cates that the dislocations responsible for 
the rotation across the boundaries are con
centrated in a zone of width less than the 
resolving power of the microscope (ca. 0.2 J.L 

or 400 lattice spacings). Electron micros
copy, however, shows dislocation distribu
tions similar to figure 6, a and shows that 
the dislocations have not formed a wall, as 
in figure 6, b. This is true for experiments at 
moderate temperature. At high temperature 
the boundaries may polygonize, but this has 
not yet been investigated. These two models 
(fig. 6, a, b) produce identical effects when 
viewed with an optical microscope, so for pur
poses of easy visualization we shall consider 
the boundaries as though they were polygo
nized. 

The model in figure 6, c represents a sym
metrical kink boundary. The edge disloca
tions in the wall introduce extra prismatic 
planes, in equal number on each side of the 
boundary. Chou (1962, p. 2750, Case a) has 
calculated the expressions for the stresses 
due to an infinite wall of uniformly spaced 
dislocations of this type in hexagonal crys
tals. All components of the stress decrease 
very rapidly with increase in distance from 
the wall and become negligible at distances 
greater than the spacing of the dislocations 
in the wall. Chou's equations are exact only 
for small rotations across the boundary but 
also hold approximately for moderate rota
tjons of the magnitude observed in our sam-

pIes (5°-30°, average 14°) . For a symmetri
cal boundary with a total rotation of 14°, 
the spacing (h) of the dislocations is: h = t 
b/sin 7° where b is the Burgers vector of the 
dislocations. This gives a value for h of 20 A, 
or approximately four lattice spacings; this 
is equivalent to a density (N) of 5 X 106 

dislocations per centimeter of the boundary. 
Thus at distances greater than 20 A from 
such a boundary the stresses are negligible, 
so that an array of this type should have no 
effect on the indices or birefringence of the 
quartz as observed under the microscope. 

ORIGIN OF THE ASYMMETRY OF 

THE KINK BANDS 

It is shown above that, if kink bands are 
formed by slip on a single system, the crys
tal axes will be symmetrical about the kink
band boundary except for elastic distortions. 
Maintenance of this symmetry as the kink 
band develops requires rotation of the kink
band boundary through the crystal so that 
it always bisects the angle between the host 
and the externally rotated crystal in the 
band. Such rotation would be accomplished 
in the dislocation model of figure 6, c by 
migration of the dislocations which form the 
kink-band boundary in their own slip planes. 
In C'rder that a kink band form, however, 
these dislocations must have been trapped 
by obstacles to their motion at the kink
band boundary. These obstacles would re
strict further motion and hence tend to pro
duce t!1e type of asymmetry which is ob
served. 

It has been noted above that kink bands 
develop more readily in crystals oriented so 
that two a-axes are equally stressed (..1 r, 
..1 z) than when slip is preferred on one a
axis (0+). It has been shown that the a-axis 
is the preferred slip direction and that slip 
in the ..1 rand ..1 z crystals probably occurs 
by simultaneous slip parallel to the two 
equally stressed a-axes. Interaction between 
these two slip systems !Day be important in 
trapping dislocations at the kink-band 
boundary. 

The development of lamellae parallel to 
the c-axis is mentioned below as evidence 


